ortho methyl groups does not appear to affect combination of an aryl radical with the amide ion^{2b} or with picolyl an $ions.^{3b}$ Formation of m-xylene from its 2-iodo derivative represents reduction; the concomitant product of oxidation is diphenyl disulfide.

A companion experiment to run 5, Table I, was reaction of iodobenzene with p-methoxybenzenethiolate ion (120 min) to form phenyl p-methoxyphenyl sulfide in 71% yield. It is significant that no trace of $bis(p-methoxyphenyl)$ sulfide was found as a product. Alkali metal cleavage of phenyl p-methoxyphenyl sulfide in ammonia or methylamine affords thiophenol and anisole,⁷ indicating that its radical anion undergoes fission as shown in eq **6.2e** If p-methoxyphenyl radical were formed in the presence of p-methoxybenzenethiolate ion, some bis(p-methoxyphenyl) sulfide should be formed. We conclude that in this system the phenyl p-methoxyphenyl sulfide radical anion transfers an electron to iodobenzene (eq 4) faster than it splits **as** in eq 6.

Acknowledgment. We are grateful for financial support by the National Science Foundation.

References and Notes

- (1) J. K. Kim and J. **F.** Bunnett, *J.* Amer. Chem. *Soc.,* **92, 7463, 7464 (1970).**
- (2) R. A. Rossi and J. F. Bunnett: (a) J. Amer. Chem. Soc., 94, 683 (1972);
(b) J. Org. Chem., 37, 3570 (1972); (c) ibid., 38, 1407 (1973); (d) ibid., 38, **3020 (1973); (e) J. Amer. Chem.** *Soc.,* **96, 112 (1974). (3) J. F.** Bunnett and B. **F.** *&or:* (a) *J.* Org. Chem., **38, 4156 (1973); (b)** *ibid.,*
-
- 39, 382 (1974).
(4) N. Kornblum, T. M. Davies, G. W. Earl, N. L. Holy, R. C. Kerber, M. T.
Musser, and D. H. Snow, J. *Amer. Chem. Soc.,* 89, 725 (1967).
(5) J. A. Zoltewicz and T. M. Oestreich, *J. Amer. Chem. Soc.,* 95,
- **(1973).**
- (6) A. Schöberi and A. Wagner, in E. Müller, "Methoden der Organischen Chemie (Hcuben-Weyl)." Vd. **M 1955, p 93. J. H.** Uhienbroek, *Red. Tfav. chim. PaysBes,* **80, 1057 (1961). J. I?. Campbell,** *J,* **Org. Chem.,**
- **27, 2207 (1962); 29, 1831 (1964). (7)** W. **E.** Truce, D. **P.** late, and *0.* N. Burdge, J. Amer. Chem. *Soc.,* **82, 2872 (1960).**

Received July *8,1974*

The Addition of Organocopper(1) Reagents to α , β -Acetylenic Sulfoxides^{1,2}

Summary: Monoalkylcopper(I) reagents (2) add to α, β acetylenic sulfoxides **(1)** with almost exclusive cis stereoselectivity to form β -alkylated α, β -ethylenic sulfoxides (3) in high yield.

Sir: Organocopper(I) reagents add to a variety of α, β -unsaturated compounds,³ including α,β -ethylenic sulfones⁴ and α , β -acetylenic esters⁵ and acids.^{5c,6} Our continuing interest in nucleophilic additions to activated acetylenes, 7 and in the ability of organosulfur functionalities to activate the triple bond toward conjugate addition, prompted an investigation of the reaction of organocopper(1) reagents with α , β -acetylenic sulfur compounds.

We have found that α , β -acetylenic sulfoxides (1)⁸ react readily with monoalkylcopper(1) reagents **(2)** to produce,

after work-up, high yields of the corresponding β -alkylated α , β -ethylenic sulfoxides (3). Furthermore, the addition
reaction was shown to be highly stereoselective, producing
the product of cis addition to the triple bond almost exclu-
sively.
 $R^1C = CS(O)C_2H_5 + R^2Cu$
 $R^2 = CS(O)C$ reaction was shown to be highly stereoselective, producing the product of cis addition to the triple bond almost exclusively.

The following procedures are representative. Into a 50 ml flask, equipped with a stopple-covered, side arm, an adapter tube with stopcock connected to a mercury bubbler, and a magnetic stirring bar, is weighed 0.727 g (3.82 mmol, *2%* in excess of the alkyllithium reagent to be used) of cuprous iodide. After oven drying, the flask is cooled while flushing with nitrogen, 12.9 ml of dry THF is injected, and to the resulting suspension at *0"* is added 2.1 ml (3.74 mmol) of a 1.78 *M* solution of methyllithium in diethyl ether over a 2-min period. The resulting suspension of methylcopper(I) (25% excess) is cooled to -78° for 15 min and a solution of 0.473 g (2.99 mmol) of ethyl l-hexynyl sulfoxide (1b) in 12.0 ml $(\sim 0.25$ M) of dry THF, precooled to -78° , is injected rapidly. After stirring for 1.5 hr at -78 ° the reaction mixture is quenched by injecting 5 ml of methanol precooled to -78° and then pouring into 25 ml of saturated aqueous ammonium chloride solution. Extraction with dichloromethane (3 **X** 25 ml), drying over MgS04, and evaporation in vacuo gives 0.549 g $(>100%)$ of 3d. In a similar manner the reaction of 3.87 mmol (25% excess) of n-butylcopper(I) in THF $(\sim 0.25 \ M)$ with 0.360 g (3.1) mmol) of ethyl 1-propynyl sulfoxide **(la)** in 12.4 ml of dry THF for 2 hr at -78° followed by quenching with precooled methanol and work-up gives 0.531 g (98%) of the other geometrical isomer, **3c.**

It was also shown that the α , β -ethylenic sulfoxides 3 can be oxidized almost quantitatively to the corresponding sulfones **4** (with no evidence of isomerization about the double bond) by treatment with 1 equiv of m -chloroperbenzoic acid in chloroform at *0"* for **24** hr.lo

The cis stereoselectivity of the organocopper(1) addition to α , β -acetylenic sulfoxides was established unambiguouslyll by an alternate stereospecific synthesis of sulfone **4c.** The reaction of the iodovinyl sulfone **5** with 2.5 equiv of nbutylcopper-bis(diisopropyl sulfide) complex^{12,13} in dry

$$
\begin{array}{ccc}\n\text{CH}_{3} & & \text{SO}_{2}\text{C}_{2}\text{H}_{5} & \text{n.C.}_{\text{H}_{9}\text{Cu}^{+}(8\text{R}_{2})_{2}} \\
\text{H} & & & \text{THF. -78}^{\circ} \\
\text{5} & & & \n\end{array}\n\quad 4c \begin{array}{cc}\n\text{LO} & & \text{3c} & (3) \\
\end{array}
$$

$$
CH_3C \equiv CH + C_2H_5SO_2I \xrightarrow[\hbar\nu]{c_6H_6} 5 \tag{4}
$$

THF at -78" for *5* hr gives an 88% yield of **4c** with 97.5% stereospecificity. Compound **5** is in turn obtained via the known stereoselective addition of a sulfonyl iodide to an acetylene,14 in 56% isolated yield.

It is interesting to note that, while monoalkylcopper(1) reagents add cleanly to α , β -acetylenic sulfoxides, lithium dialkylcuprates may also give a product resulting from the cleavage of the acetylenic sulfoxide. While lithium dimethylcuprate adds normally to **la** (83%) and **lb** (97.5%, >96% cis addition), the more reactive lithium di-n-butylcuprate reacts to give appreciable quantities of n -butyl ethyl sulfoxide **(6)** as well, apparently arising from attack by the organocopper(1) reagent at sulfur rather than on the triple bond. b give appreciable quantities of *n*-butyl ethyl suit-

b) as well, apparently arising from attack by the or-

pper(I) reagent at sulfur rather than on the triple
 $1 + (n-C_4H_9)_2$ CuLi $\frac{THF}{-78^6}$ $n-C_4H_9S(O)C_2H_5 + 3$ (

$$
1 + (n-C_{4}H_{9})_{2}CuLi \xrightarrow[{}-78^{6}]{THF} n-C_{4}H_{9}S(O)C_{2}H_{5} + 3
$$
 (5)

Like results have been observed for additions of organocopper(I) reagents to α , β -acetylenic sulfones,⁸ ethyl 1-propynyl sulfone giving an 81% yield of adduct with lithium $di-n$ -butylcuprate and a 90% yield with *n*-butylcopper. However, here a difference between the two types of organocopper(1) reagents is manifest in the stereochemistry of the product, n-butylcopper giving 92% cis addition while di-n-butylcuprate gives, on work-up, 81% of the product, which would correspond to overall trans addition.¹⁵

References and Notes

- (1) Presented at the 167th National Meeting of the American Chemical So-ciety, Los Angeles, Calif., March 31-April 5, 1974, Abstract ORGN-70.
- (2) Financial support for this work was provided in part by the National Institutes of Health, Grant CA-04536, for which the authors are grateful.
(3) For a recent review, see G. H. Posner, Org. React., 19, 1 (1972).
(4)
-
-
- 1851 (1969); (b) J. B. Siddall, M. Biskup, and J. H. Fried, *ibid.,* **91,** 1853 (1969); (c) J. Klein and R. M. Turkel, *ibid.,* **91,** 6186 (1969).
- (6) (a) Very recently, the addition of organocopper(i) reagents, generated from Grignard reagents, to α , β -acetylenic sulfides has been reported: P.
Vermeer, C. de Graff, and J. Meljer, *Recl. Trav. Chim. Pays-Bas*, (1974). (b) A study of the reaction of organocopper(l) reagents with
 α,β -acetylenic sulfoxides has also been undertaken: J. Meijer, private communication.
- (7) W. E. Truce and G. J. W. Tichenor, J. *Org. Chem.,* **37,** 2391 (1972).
- (8) Prepared from the corresponding α,β -acetylenic sulfides" by oxidation communication.
W. E. Truce and G. J. W. Tichenor, *J. Org. Chem.*, 37, 2391 (1972).
Prepared from the corresponding α , β -accetylenic sulfides⁹ by oxidation
with 1.0 equiv of m-chloroperbenzoic acid in chloroform at same conditions produces the corresponding α , β -acetylenic sulfones: W. E. Truce and L. D. Markley, *J. Org. Chem.*, **35,** 3275 (1970).

(9) For the preparation of α,β-acetylenic sulfides, see J. F. Arens, *Advan.*
-
- Org. Chem., 2, 117 (1960), and references cited therein.

(10) Glpc analysis of the product of 1a and 2b, after oxidation to the sulfone,

on an Aerograph Autoprep A-700 chromatograph using an 8 ft \times 0.25

in. 15% neop thermal decomposition at the temperatures necessary to elute them
- (11) The steechemistry of the sulfoods products and their corresponding
sulfones is also indicated by their ¹H nmr spectra [in CDCl₃, parts per
sulfones is also indicated by their ¹H nmr spectra [in CDCl₃, parts p
- found that a similar reaction of lithium di-n-butylcuprate with 5 in THF at -78' is notstereospecific, giving an 80:20 mixture of **4c** and **46.**
- (13) E. J. Corey and R. H. K. Chen, *Tetrahedron Lett.,* 1611 (1973).
(14) W. E. Truce and G. C. Wolf, *J. Org. Chem.,* **36,** 1727 (1971).
(15) J. R. Allison, unpublished results, this laboratory.
(16) Texaco Fellow in Org
-
-

Department *of* Chemistry **William E. Truce*** West Lafayette, Indiana *47907*

Received July *17,1974*

Michael J. Lusch¹⁶

A New and Efficient Approach to Functionalized Hydroazulenes via **2-Methylcyclopentenone 3-Dimethylsulfoxonium Methylidel**

Summary: **A** three-step sequence for the construction of functionalized hydroazulenes *5* is described starting from the novel cyclopentenone ylide **2.** The preparation of **2,** its reactions with Michael acceptors to produce vinyl cyclopropanes such as **3,** and the use of the divinylcyclopropane rearrangement to generate the **bicyclo[5.3.0]decadienone** system are described.

Sir: Recently, many sesquiterpenes possessing a hydroazulene skeleton have been isolated,2 some of which have exhibited significant medicinal properties.³ Despite the many efforts in the area of hydroazulene synthesis, 4 there are a very limited number of approaches which could accommodate a multitude of sensitive oxygen functionality. Our interest in sesquiterpene lactones possessing the guaiane and pseudoguaiane skeletons has resulted in the development of the synthetic scheme described in this communication. We have recently reported on the reactions and synthetic applications of carbonyl stabilized allyl sulfoxonium ylides.⁵ In this communication we wish to report on the preparation of 2-methylcyclopentenone 3-dimethylsulfoxonium methylide **(2),** its reactions with several Michael acceptors, and its utility in the synthesis of functionalized hydroazulenes.

Sulfoxonium ylide **2** was prepared in at least 50% overall yield from the commercially available 2-methyl-1,3-cyclopentanedione. The 1,3-dione was treated with excess oxalyl chloride to produce the **3-chloro-2-methyl-2-cyclopenten**one (1).6 Treatment of the vinyl chloride **1** with 2 equiv of dimethylsulfoxonium methylide in tetrahydrofuran resulted in the formation of the crystalline ylide **2** (mp 170- 173°).7,8

This new allyl ylide reacted cleanly with Michael acceptors such as acrolein, crotonaldehyde, and methyl vinyl ketone to produce vinyl cyclopropanes **3a-c** (see Table I).5a

Usually the reaction was carried out using **1.5** to 2.0 equiv of the Michael acceptor in acetonitrile. Cyclopropanes **3a-c** were isolated in a very pure state by evaporation of the acetonitrile and washing the ethyl acetate solution of the residue with water. Cyclopropane **3a** consisted of a **7:l** mixture